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SUMMARY
Sinusoidal acoustic pressure and flow perturbations and related

mechanical vibrations were investigated experimentally and analytically
in a system consisting of a long hydraulic transmission line with a 90°

.elbow at the midpoint. The line was supported in a manner that allowed

longitudinal movement of the downstream half. A sinusoidal perturbation
was imposed on the mean flow at the upstream end by means of small oscil-
lation of a throttle valve about a partially open mean positiocn. The
downstream end was terminated in a restricting orifice. Pressure and
flow perturbations at both ends of the line and the longitudinal vi-
bration velocity of the downstream pipe section were measured for a range
of frequencies.

A method of analysis is presented that is applicable in general to
lines consisting of sections of straight pipe connected by bends and sup-
ported in a manner permitting longitudinal motion of one or more sections.
This method of analysls, which consisted of treating the vibrating pipe
section as a viscous-damped spring-mass system and neglecting attenuation
of the acoustic waves, was applied to the experimental system with results
generally in good agreement with the experimental measurements.

The pipe motion, driven by unbalanced pressure forces on the elbow
and the downstream orifice plate, was found to be a major factor in de-
termining the resultant fluid-wave motion. The significant effect of
the elbow was solely to provide coupling between the pipe motion and
wave motion. Thus, the elbow per se caused no appreciable reflection,
attenuation, or phase shift in the fluid waves.

INTRODUCTION

Acoustic pressure and flow perturbations in long hydraulic lines
often are of importance in the operation of various fluid systems.
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Among these are hydraulic control and rocket propellant systems. If the
hydraulic lines are of sufficient length, they will make a significant
contribution to the overall dynamic response of the system. Various
analyses (refs., 1 and 2) of such systems have been made that show the im~-
portance of acoustic effects. Lightweight fluid systems for missile and
space applications are more susceptible to acoustic disturbances because
of increased mechanical flexibility. Analysis of acoustic effects, there-
fore, is of increasing importance in the design of these fluid systems.

The results of an experimental study of sinusoldal perturbations of
flow in a straight pipe rigidly supported at one end (ref. 3) show that
longitudinal wave motion in the material of the pipe wall has a signifi-
cant effect on the fluid pressure and flow perturbations at frequencies
near the quarter-wave resonant frequency of the pipe. A different type
of mechanical vibration may occur in hydraulic lines not rigidly sup-
ported, containing bends or elbows. A section of the line may vibrate
longitudinally as a whole in response to unbalanced mechanical forces
resulting from the difference in the fluid pressure perturbations at the
two ends of the section.

In this report a method of enalysis is proposed to describe acoustic
pressure and flow perturbations and associated mechanical oscillations in
a fluid transmission line in which a section of pipe is allowed to vibrate
longitudinally as a whole. A system in which such vibration could occur
was investigated experimentally at the NASA Lewls Research Center, and
the results are compared with the analysis of the same system.

The experimental system consisted of a 68-foot-long stainless-steel
line (1.00-in. 0.D. by 0.085-in. wall) containing a 90° elbow at the mid-
point. The line was supported rigidly at the upstream end, and flexible
supports were used at the downstream end and at Intervals along the line.
The experiment covered a range of dilsturbance frequencies from 0.5 to
about 75 cycles per second, mean flow speeds from 5 to 10 feet per second,
and mean line pressure from 50 to 225 pounds per square inch. The aver-
age amplitude of the sinusoidal perturbation was approximately 5 pounds
per square inch for pressure and 0.13 foot per second for fluid velocity.
The fluid used was JP-4 fuel. As in the system of reference 3, the flow
was modulated by means of a hydraulic servo valve at the upstream end
and was restricted by an orifice at the downstream end.

EXPERIMENTAL SYSTEM
Apparatus
Flow system. - The essential parts of the open-loop pumped-return

flow system used in the experiment are shown in figure 1. The fluid
(Jp-4) was forced through the test line by a gear pump, and the mean
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flow rate was measured by means of a rotameter. Hydraulic accumulators

were placed between the pump and the test line to provide steady supply
pressure. The discharge from the test line was submerged in a constant-
height vented tank. Fluid was returned to the supply tank by intermit-

tent operation of the return pump.

Flow disturbance generator., - Sinusoidal perturbations of flow and
pressure were induced in the system by means of an electrohydraulic servo-
actuated throttle valve located just upstream of the test line. The
throttle was oscillated sinusoidally about a partially open mean position
in response to an alternating voltage. A porous-metal filter was placed
between the throttle and the test line to reduce turbulence.

Test line. - The test line, made of stainless-steel tubing, 1,00
inch in outside diameter with a 0.065-inch wall thickness, was 68 feet
long and had a sharp 90° elbow at the midpoint. A schematic diagram of
the test line 1s shown in figure 2. The upstream end was attached to
the throttle valve, which in turn was rigidly fastened to the ground.
The downstream end was attached to the outlet tank by means of a neo-
prene diaphram, which allowed axial motion but suppressed transverse
motion. Between the ends, the test line rested on horizontal transverse
wires spaced at l-foot intervals. The test line was terminated in an
orifice plate containing 34 holes 0.040 inch in dismeter. The instru-
ment sensing elements and the orifice plate were attached rigidly to the
end of the tube. Thus, the test-line suspension allowed longitudinal
oscillation of the downstream half of the line (section CE, fig. 2) in-
cluding the instruments and orifice plate.

Instrumentation. - Instrument sensing elements to measure pressure
and flow perturbations were located at stations A and E (fig. 2). The
pressure sensors were commercial flush-diaphragm units. Pressure pertur-
bations in pounds per square foot were obtained by means of static cali-
brations of each unit with its associated amplifier., The flow-
perturbation sensors were hot-wire anemometers specifically designed for
use in liquid (ref. 3). It was not practicable to obtain static cali-
brations of the hot-wire sensors because the response is linear only for
small perturbations and the sensitivity is a function of the mean fluid
velocity. For this reason separate normalizing factors were determined
for each run to make the measured impedance equal the calculated value
for frequencies from 2 to 4 cycles per second.

The displacement of position of the downstream half of the line was
measured with a linear variable differential transformer located at
station D. The displacement amplitude in feet was obtained by means of
a static calibration of the differential transformer and its associlated
amplifier. The vibration velocity V 1in feet per second was calculated
from the sinusoidal displacement for each frequency. Provision was also
made for the measurement of mean gage pressure at both ends of the line.



The output of the pressure, fluid-flow, and pipe-displacement sen-
sors was in the form of alternating-current electrical signals with phase
and amplitude determined by the perturbation of the quantity being
measured. These alternating-current signals were amplified and supplied
to a commercial transfer-function analyzer which indicated and partially
analyzed the data. This instrument effectively rejects all frequencies
(noise, distortion, etc.) except the reference frequency and indicates
the reference-frequency signal in resolved-component form.

The transfer-function analyzer consisted of two units: (1) an
oscillator, which supplied (a) the signal for the servo-throttle flow-
disturbance generator and (b) a four-phase reference voltage to the re-
solved component indicator, and (2) a resolved-component indicator,
which indicated the in-phase and quadrature (90° out of phase) components
of the pressure, flow, and displacement signals with respect to the
reference voltage.

Procedure

The flow system was operated at constant mean flow rate and pressure
until conditions had stebilized. Mean gage pressure readings were taken
at stations A and E, and the mean flow rate was read on the rotameter.
The servo throttle was operated at a series of frequencies from 0.5 to
about 75 cycles per second. The amplitude of the throttle area vari-
ation was maintained constant over the entire range of frequencies for
each run and was kept small relative to the mean open area to avoid non-
linear effects. At each frequency the values of the in-phase and quadra-
ture components of the five dynamic parameters (upstream and downstream
pressure and flow, and pipe position perturbations: Py, Pp, Qy, Q, and

Xp) were read in succession on the resolved-component indicator. The

mean pressure drop across the downstream orifice was constant during
each run, but was changed from run to run to vary the orifice impedance.

The following dimensionless transfer functions were computed from
the data to show the relations among the measured quantities. (A11
symbols are defined in appendix A.)

(1) The dimensionless upstream acoustic impedance:

P
A
= (1)
o

(2) The interterminal pressure ratio:

p ,
Py
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(3) The dimensionless downstream mechanical admittance:

ZoSV
T X — = BC_V (3)
Pp Py

In the foregoing equations Zy 1s the characteristic acoustic impedance
of fluid waves in the plpe given by

Zo = %—c (4)

The value of the sonic speed ¢ wused to determine Zp was 3750
feet per second. This value was determined by correcting the value used
in reference 3 (3850 ft/sec) for the difference in mean temperature be-
tween the two series of experiments (approx. 16° F). The rate of change
of sonic speed with temperature (-8 ft/(sec)(®F)) was obtained from data
on the density and bulk modulus of hydrocarbons given in reference 4.
The density of the fluid was 1.5 slugs per cubic foot, and the internal
area of cross section of the line was 0.00413 square foot; hence, Zg

was calculated to be 1.36x108 pound-second per (foot)>.

ANALYSTS
Method of Analysis

The proposed method of analysis is applicable in general to hy-
draulic transmission lines composed of sections of straight pipe con-
nected by bends or elbows in such a manner that some longitudinal motion
of one or more sections is permitted. It is assumed that one end of the
line is terminated in a known impedance; that is, the relation between
pressure and flow perturbations at one end of the line is assumed known.
If a sinusoidal perturbation of flow or pressure, or both, is impressed
at the other end of the line, the resulting perturbations of flow and
pressure at all points in the line and the perturbation of position of
the movable pipe section(s) will be pericdic at the same frequency and
approximately sinusoidal. The dynamic behavior of the system is to be
described by means of transfer functions giving the relations among the
various perturbations in terms of phase and amplitude as a function of
the impressed frequency. Methods of calculating these transfer functions
are described in the following analyses.

Assumptions. - Analysis of the system is facilitated by making the
following simplifying assumptions:

(1) Undamped sinusoidal acoustic waves exist in the fluid.



(2) Longitudinal expansion or compression does not oceur in the
pipe walls.

(3) The longitudinal motion of a section of pipe vibrating as a
whole can be described by the equations for a perfect viscous-damped
spring-mass system.

(4) The mean fluid flow speed is negligible compared with the sonic
speed.

(5) The terminating impedance at one end of the line is known as a
function of frequency.

The applicability of the method is limited to systems in which the
assumptions are approximately fulfilled. For example, the assumption of
undamped waves may exclude systems employing highly viscous fluids or
very small diameter lines. The assumption of no longitudinal compression
and expansion 1s equivalent to neglecting sonic waves in the pipe wall.
(The sonic velocity in steel is about four times that in JP-4). The
applicability of the results 1s therefore limited to frequencies well
below the lowest natural resonant frequency of longitudinal wave motion
in the walls of any straight-pipe section not rigidly supported at both
ends.

OQutline of method of analysis. - Essential steps in the analysis
procedure are the following:

(1) The mechanical forces on the moving pipe section(s) are ex-
pressed in terms of the pressure perturbations at the two ends and are
related to the pipe velocity perturbation by means of the mechanicsl im-
pedance of the moving pipe, regarded as a viscous-damped spring-mass
system,

(2) The acoustic equations for undamped sound waves are used to re-
late the pressure and flow perturbations at the two ends of each stralght-
pipe section (fixed or moving). The flow perturbations are defined with
respect to a fixed coordinate system, and the mean fluld flow speed is
neglected.

(3) Equations based on continuity of pressure and flow including
the flow equivalent of the pipe motion are used to relate conditions in
adjoining pipe sections.

(4) The relation between flow and pressure at one end of the line
is defined by an expression for the impedance in terms of frequency.

(5) The equations obtained in the preceding steps are solved to ob-
tain expressions for the desired transfer functions.
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* Analysis of Experimental System

Pressure and flow variations introduced by the oseillating throttle
valve and reflected at the exit orifice set up a wave pattern in the line
in which the pressure perturbation at the elbow is generally different
from the exit pressure perturbation. This pressure difference causes
the section of pipe from C to D (fig. 2) to vibrate longitudinally, and
the vibratory motion modifies the flow perturbations.

The description of fluld waves in the line by means of the usual
equations of acousties requires that the flow perturbations be referred
to a fixed system of coordinates. Accordingly, fixed reference stations
B, C, and D (fig. 2) have been selected. Stations B, C, and D are intro-
duced for use in the analysis, whereas stations A and E represent the
locations of the instruments attached to the plpe. Station A, like B,

C, and D, is fixed with respect to the ground as the pipe is rigidly

. supported at that point; but station E, the exit measuring station, is
not fixed but moves with the plpe. Measured values of flow at station
E, therefore, represent flow with respect to the moving pipe.

Steps (1) to (5) of the analysis procedure outlined previously were
applied to the system shown in figure 2 as follows:

Step (1): Relstion of pressure perturbations to pipe motion. - The
pressure perturbations at the ends of plpe section CE provide a net longi-
tudinal driving force in the direction C - E given by

F = S[Pg(1 - €) - Bg] (5)

where S(1 - €) is the area of the solid portion of the orifice plate
(excluding the holes). Being flexibly supported, section CE responds
with a longitudinal vibration veloeity V. The transfer function re-
lating F to V 1s the mechanical impedance Z,:

S[Pp(1 - €) - Pn]
Zm:%‘" . v€ - (6)

For an ideal viscous-damped spring-mass system the mechanical impedance
is given by C )

Zm=D+i(2nfM-§’—;?) (7)

where D is the resistance coefficient, M the mass, and K the stiff-
ness,

Step (2): Pressure-flow relations in straight-pipe sections. - In
the section of pipe from A to B the pipe vibration is at right angles to




the flow and therefore is assumed to have a negligible effect on the
longitudinal wave motion. In the section from C to D the pipe motion is
parallel to the flow and, except for frictional effects which are neg-
lected in the analysis, has no influence on the wave motion in a fixed
coordinate system. In the plpe sections AB and CD, therefore, the equa-
tions for undamped sound waves in uniform pipes are applicable, and the
following sets of relations (derived in appendix B using assumptions (1)
and (4)) are obtained.

Equations relating conditions at opposite ends of section AB:

Pgp = Py cosh iB - ZpQy sinh ip h

Zo%%

Py = Pg cosh iB + ZpQg sinh ip

1

ZOQA cosh ip - PA sinh iP

ZOQA = ZOQB cosh iBf + PB sinh iB

~

Equations relating conditions at opposite ends of CD:

Pp = Po cosh iB - ZgQa sinh i

fl

ZpQg cosh i - P sinh iB

Zo4p

PC = PD cosh if + ZOQD sinh ip

(9)

Z

i

ZOQD cosh if + Pb sinh iB ,

The dimensionless frequency parameter B appearing in equations
(8) and (9) is defined by

0%

1
2nf —
B=—2 (10)

C

This parameter represents the phase shif't (in radians) occurring in the
distance 1/2 for a single sinusoidal wave train of frequency f and

propagation speed c. Introducing the wavelength A in equation (10)

gives

- 1
p=Z (12)

"showing that B is proportional to the ratio of line length to wave-
length.
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Step (3): Continuity relations for pressure and flow. - The ve-
locity of the fluid at station C is the sum of the velocity of the fluid
with respect to the pipe and the velocity of the pipe. The velocity of
the fluid with respect to the pipe is the same at C as at B; therefore,
the flow-continuity relation at the elbow is

89 = %@ +V (12)
S S

The assumption that there is no damping at the elbow is expressed by
Po = Py (13)

Similar equations describe the conditions of continuity between
stations D and E as follows:

PD = PE (14:)

SE = 39 (15)
s~ 8 "

Step (4): Impedance at station E. - The imaginary component of the
orifice-plate impedance, caused by inertial reaction to changes in flow,
has been calculated to be between 10-%4 and 10-° times the characteristic
impedance. To a very close approximation, therefore, the exit-orifice
impedance Zp 1is real and equal to the slope of the steady-state

pressure-flow curve at the operating pressure. Thus, the relation hbe-
tween pressure and flow perturbations at the exit station is

EE:Z 16)
E (

Step (5): Determination of transfer functions. - It is desirable
to describe the characteristics of a transmission line in terms of re-
lations among the variables that are observable at the terminals of the
line. These variables are Py, Q, Pg, Q, and V. The relations among

these variables are described by dimensionless transfer functions in-
cluding the dimensionless upstream impedance 1z, = PA/ZOQA, the inter-

terminal pressure ratio ¢ = PA/PE, and the dimensionless downstream me-
chanical admittance T = Vpc/PE. Expressions for these functions were

found from equations (6) to (16) by means of algebraic and trigonometric
manipulation shown in appendix B. The subsecripts x and y are used

to denote the real and imaginary components of a complex number; for ex-
ample, ¢ = &, + i®y. The results are given in terms of the dimensionless
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frequency parameter B (eq. (10)), the dimensionless mechanical impedance

Zm is defined by

Ly

“m = pcS

and the dimensionless exit impedance zp 1s defined by

, - B _ZES
B~ %0 pc

Equations for calculating the four transfer functions are

) sin B
(_Y.&C.) = Tx = Zm’x(l - €& - cos B) - (Zm)y + s B) ZE
Pp N ZS,X + (Zm,y + sin B)°
A sin B
-(zp y + sin BY(1 - € - cos B) - —=%
(EZE) = P, = ’ ’E
e/, 25 x + (2 y + sin B)°
P
(ﬁé) = &, = cos 2B - Ty(sin 2B - sin B) A
E/x
>
BA sin 2B
(?1::-) = Qy = T + TX(Sin ZB - sin B)
y v

y = C0s 2B | T .(cos 2B - cos B)\

X
z
B
\
Y = sin 2B + Ty(cos 2B - cos B)J
By Oy ¥y + Oy ¥y h
ZOQA B ZA’X = \1,2 \1{2
b x ¥ iy

( Py ) . _ ¢wa - ¢wa
T %A,y T 2 2
- 2 ¥+ Yy J

=

(17)

(18)

(19)

(20)

(21)

(22)
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Equations (19) to (22) together with the definitions of B, Z and  zg

(egs. (10), (17), and (18)) show that the performance of the system can
be calculated if the parameters p, c, S, and 1 are given and 2, and

Zz are known as functions of frequency. The physical and geometrical

constants p, ¢, S, and 1 can be presumed to be known, and the down-
stream impedance Zy can be found from the orifice curve.

The mechanical impedance Z, of the moving pipe section was found
from equation (7) using for M the actual mass of pipe section CE in-
cluding the fittings and instrument sensors at station E. The stiffness
of the suspension k was obtained from static measurements of force and
displacement, and the resistance coefficient D was calculated from the
dynamic test data using values of Pp and V for a narrow range of
frequencies about the natural resonant frequency. Thus, the pipe motion
was represented by a viscous-damped spring-mass system with the following
parameters:

Mass, M, slug . . T T Oy Y
Stlffness,K,lb/ft.... I o741
Resistance coefficient, D, 1b- sec/ft A §
Undamped natural frequency) CDS o o s « s o » o s o s s s s s s &+ 13
Dimensionless damping factor, £ « « « « « ¢ « ¢« ¢« o + + » « +» +» » 0.16

RESULTS AND DISCUSSION

The analytical results are presented in figure 3 in the form of
phase and amplitude of the several transfer functions plotted against
the dimensionless frequency parameter f for values of the dimension-
less downstream impedance from 0.6 to 1.3. The functions presented in
figure 3 are the dimensionless downstream pipe-motion admittance
Vpc/PE calculated from equation (19), the interterminal pressure ratio

BA/PE from equation (20), and the dimensionless upstream impedance

Pp/ZoQy from equation (22). The mechanical resonant frequency of the

pipe section was 13 cycles per second, and the corresponding value of B
is 0.236 .

Experimental values of phase and amplitude of Vpc/P 5 PA/ZOQA, and

EA/PE are shown in figures 4, 5, and 6 plotted as a function of the

frequency parameter B. The plotted points in figures 4 to 6 were de-
termined from the experimental data, and the solid curves are the ana-
lytical results obtained by interpolation from figure 3. The dotted
curves show for comparison the calculated response for a stationary
straight line of the same total length. The agreement between the re-
sults of experiment and analysis is considered excellent. The experi-
mental data points follow the pattern of response given by the moving-
pipe analysis, and both show substantial departures from the calculated
response of a stationary line.
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Effect of the Elbow

The generally good agreement between the experimental and analytical
results shown in figures 4 to 6 clearly demonstrates that the effect of
the elbow on the dynamics of the fluid system arises primarily from the
interaction between mechanical and acoustic disturbances. The elbow pro-
vides a coupling mechanism whereby fluid pressure perturbations give rise
to longitudinal forces on the piping, and pipe motion modifies the fluid
flow perturbation. The analysis wes based on the assumption that this
was the only effect, that is, that the elbow, if stationary, would not
cause any reflection, attenuation, or phase shift in the fluid waves,

The agreement 1s sufficiently good to warrant the conclusion that the
effect of the elbow per se was negligible compared with the effect of
pipe motion.

Mechanical Response of Pipe

The fact that the pipe velocity was substantially as calculated for
an ideal viscous-damped spring-mass system is shown by the results in
figure 4. The admittance function Vpc/PE is referred to the downstream

pressure perturbation Pp instead of the effective driving pressure
[PE(l - €) - Pc]. Thus, the curves of figure 4 represent the response of

a second-order system to a variable driving force.

Effect of Pipe Motion on Fluid Waves

The general nature and extent of the effect of pipe motion on the
upstream impedance and the interterminal pressure ratio can be shown by
a comparison with the calculated response of a rigid system. The latter
case, shown by the dotted lines in figures 5 and 6, was determined by
setting the pipe velocity equal to zero, making T = O 1in equations (20)
and (21). This procedure gives the familiar equations for undamped fluid
waves in a stationary straight line. A comparison of the dotted and solid
curves in figures 5 and 6 shows that pipe motion has a significant effect
on both the upstream impedance and the interterminal pressure ratio
throughout the range of frequency included in the experiment. Typical
maximum differences between the moving and stationary systems are 25
percent and 250 (0.14 n). The details of the curves are not of general
interest because they apply only to the specific system used in the ex-
periment., However, these results demonstrate that longitudinal pipe
motion produces significant changes in the fluid-wave pattern, and that
grave errors may be incurred if the effect of pipe motion is neglected.
The method of analysis used herein provides a correct description of the
response of the system.

T821-4
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CONCLUDING REMARKS

The results of this investigation show that, in a fluid transmission
line in which longitudinal motion of a section of piping is allowed,
pressure forces will make this section of pipe move, and the resulting
motion will have a significant effect on the dynamic response of the line.

The method of analysis proposed herein allows the calculation of this
effect by treating the moving pipe as a lumped-parameter vibrating system
interacting with undamped acoustic waves in the fluid. Application of the
method is limited to frequencies at which distributed-parameter vibrations
in the material of the pipe walls can be neglected. The elbow per se
caused no noticable reflection, attenuation, or phase shift in the fluid
waves.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, Feburary 15, 1962



APFENDIX A

SYMBOLS
(Note: Quantities that are in general complex are so noted.)
sonic speed, ft/sec
effertive viscous-damping resistance coefficient, lb-sec/ft
vi otive force, 1b (complex)
frequency, cps
total length of line, ft
mass of vibrating portion of pipe, slugs
pressure perturbation, 1b/sq ft (complex)
volume-flow perturbation, cu ft/sec (complex)
ares of cross section, sq ft
vibration velocity, ft/sec (complex)

perturbation of pipe position, ft (complex)

acoustic impedance, Z = P/Q, lb-sec/ft° (complex)

characteristic acoustic impedance, Z, = pc/8, lb-sec/ft°
mechanical impedance, Zm = F/V, lb-sec/ft (complex)
dimensionless acoustic impedance, z = Z/ZO’ (complex)

dimensionless mechanical Impedance, z, = zm/pcS, (complex)

dimensionless frequency parameter, B = an/c, radians

ratio of area of holes in orifice plate to interior cross section
of pipe

T83T-d
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Subscripts:
A,B,C, D, E
pe

¥

15

dimensionless damping factor, { = D/Zq/ﬁf
stiffness of pipe suspension, lb/ft
wavelength, ft

density, slugs/cu ft

dimensionless downstream mechanical admittance defined by
T = pcV/PE (complex)

interterminal pressure ratio defined by & = PA/PE (complex)

dimensionless interterminal admittance defined by
V¥V = ZOQA/PE (complex)

stations shown in fig. 2

real part of complex number
imaginary part of complex number
wave moving downstream

wave moving upstream
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APPENDIX B
DERTVATIONS

Derivation of Acoustic Equations Relating Pressure and
Flow Perturbations at Two Points in a Tube

It is shown in textbooks in acousties (ref. 5) that the relation
between the pressure and flow perturbations in an undamped sinusoidal
wave train moving in the positive direction in a tube of infinite length
and uniform area is

P

= =7, (B1)

Q.

For a similar wave train moving in the negative direction,

= = - Z (B2)

-

If a sinusoidal perturbation of flow or pressure 1ls introduced any-
where in the system, the pressure and flow perturbations at any station
may be represented by the sum of two sinusoldal wave trains moving in
opposite directions, the relative amplitude and phases of the two com-
ponents being determined by the boundary conditions. Equations relating
the pressure and flow perturbations at stations A and B, separated by a
uniform section of tube of length 1/2, are-developed as follows.

Adding the effects of the positive- and negative-moving waves gives
the resultant pressure and flow perturbations at station A:

]

PA P+A + P—A (33)

%

Using equations (Bl) and (B2) with (B4) gives

Il

Q‘-I-A + Q—A (B4)

2oy = Pup - Pp (35)
and from (B3) and (B3),

182T-4
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Pp =2 (Pa - Z0%) (B7)

By using the convention that the direction from A to B is positive and
the assumptions that the waves are undamped and the mean flow speed is
negligible compared with the sonic speed, there is obtained for the
positive-moving wave at station B:

Pp = Pae 1P (B8)

where [ 1is the lag in phase at B compared with A. In the case of the
negative-moving wave the phase at B leads A by the same angle; therefore,

P = P_petiP (B9)
The total-pressure perturbation at B is
_ _ -i +ip
Py = Pip + Pp = Pye P i P e
Using equations (B8) and (B7),
Py = L (B + 2o@)e P + L (B, - 2gqy)etP
BT 3 ‘A O%A 3 VA 0™
Pp = Py cosh if - ZgQy sinh iP (B10)
The flow perturbation at B is found in a similar way:
-1
p = Qe P

o+1B

I

Qg = Q.p

Multiplying by Zp, adding and substituting from equations (Bl) and (B2),

~-ip +i8
ZoQp = ZoQp t+ ZoQp = Pyp® - Ppe

Substituting from equation (B6) and (B7) and simplifying give

ZoRp = ZoQy cosh iB - Py sinh iB (B11)
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Solving equation (B10O) and (Bll) for Py and ZnQ, gives
Py = Pp cosh 1B + ZpQg sinh 1B (B12)
ZoQy = ZoQp cosh if + Pp sinh i (B13)

Equations applicable to the section from C to D are obtained by changing
subscripts.

Details of Derivation of Equations (19) to (22)

From equations (8) and (17),

Vo = El" [Pg(l - ) - Pl (B14)
m

Substituting the expression for Py from equation (9) gives

1 . b
Voe = = [Pg(1 - €) - (P cosh iB + ZyQy sinh iB)] (B15)

Using equations (14), (15), and (16),

P.
Voe = .}_l%’E(l - €) - (PE cosh if + = Z, sinh iB + VSZ, sinh iﬁ)] (B16)
2 ZE

Using equations (4), (17), and (18) and rearranging result in

L P
Voc (1 + ﬂi—@) =k (1 - ¢ - cosh i - ﬂi—ﬁ) (B17)
Zm Zm ZE

The transfer function T 1is given by (eq. (3))
1 - ¢ - cosh ip - Sinh 1B

zZ
T = IS - __ E (B18)
Pg z, + sinh 1B

T8eT-d
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Letting T =Ty + iT  and Zy = Zpy izmy. and separating the real
and imaginary parts,
sin B \
z (1 -¢€ - cos B) - (z__ + sin B)
mx Z
AIET, J B
X y 2 . 2
z" + (z__ + sin B)
mX my

' Zx sin B
-(zmy + sin B)(1 - € - cos B) - =

+ 1 (198.)

zgx + (Zmy'+ sin p)2
From equation (9),
Pe = Pp cosh iB + ZoQp sinh iP (B19)
ZoQe = ZoQp cosh iB + Pp sinh iP (B20)

Substituting from equations (12) to (16) in (B19) and (B20), respectively,
and simplifying using equation (3) and (18) result in

P
PB = PE cosh 1B + ZO(ZE_ + VS) sinh iB = PE cosh iB + (E]'E + '.I‘) sinh 1

(B21)
Pr 3 . . .
ZoRg = = Z2oVS + Zg Z_E + VS | cosh i + Pp sinh iP
= Pp (AL-+’I) cosh iB + sinh if - T (B22)
’E

From equation (8),

Py = Pg cosh i + ZOQB sinh iB



20

Substituting from equations (B21) and (B22),

Py 1
= cosh iB +{ — + T} sinh ip} cosh iP
E ’E

+ [(-;‘— + 'I‘) cosh iBf + sinh iB - I]sinh ip
B

and simplifying,

d = cosh i2B + f; sinh i2B + T(sinh i2B - sinh iB) (B23)
E

Separating real and imaginary parts,

o, + 10, = cos 2B - ’I‘y(sin 2B - sin B)

[Eil_Ezi + %((Sin 2B - sin B)] (20a)

From equation (8),

ZOQA = ZOQ'B cosh if + PB sinh iB

Substituting from equations (B2l) and (B22) and simplifying as before,

ZaQ,
0 (—L+ T)COSh iB + sinh if - ’I‘] cosh iB
P. z
B E
+ [cosh iB + (-Zl— + 'I‘)sinh iB] sinh i
E

¥ = sinh i2B + -Zl— cosh i2B + T (cosh i2B - cosh iB) (B24)
E

= L cos 2B + Ty (cos 2B - cos B)

¥ o+ 1Y
X
Zg

y

+ i [Sin 2B + rI‘y(cos 2B - cos (3)] (21a)

Equation (22) was obtained directly from

ZA:Y

TRAT-W
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Figure 4. - Dimensionless downstream plpe-motion admittance.
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